
AEP 4380: Homework 2

Gregory Kaiser

September 18th, 2019

1 Problem Background and Solution Overview

Using Fresnel diffraction theory, this homework asks for a simulation of light wave interference
near an opaque edge, some small distance from a viewing plane. According to the problem prompt,
numerical methods are required to calculate the intensity of light incident on the viewing plane. The
prompt also conveniently rearranges the integral into an easier-calculated form using the following
equations:

I(u0) =
1

2
I0{[C(u0)− C(−∞)]2 + [S(u0)− S(−∞)]2} (1)

C(u0) =

∫ u0

0
cos

(
π

2
u2
)
du (2)

S(u0) =

∫ u0

0
sin

(
π

2
u2
)
du (3)

u0 = x0

√
2

λz
(4)

These are defined such that u0 is a dimensionless parameter dependent on x0 and C(−∞) =
S(−∞) = −0.5. C(u0) and S(u0) are the Fresnel integrals.

Using a simple trapezoid-rule integration method as discussed in class (also found in equation 4.1.11
in Numerical Recipes , 3rd edit, by Press et al), each of the Fresnel integrals can be calculated first,
before then calculating I

I0
to achieve a numerical result for the intensity. By varying x0, we can get

a sense of the behavior of such incident light on an opaque plane.

2 Solution Description

Following the homework prompt, I created methods outside of main() which calculate C(u0) and
S(u0) independently with the same trapezoid method, called ceval and seval respectively. They
both take a number of points n and a value u0. Then another helper method ieval computes the
intensity based on equation (1). Results for different values of n and two values of u0 can be found
in the Results section below.

A simple for loop increments the value of x0 in order to calculate results for x0 = −1.0µm through
x0 = 4.0µm, and prints them into an output file.

1



AEP4380, Homework 2, Gregory Kaiser, Fall 2019 2

3 Results and Interpretation

The following table was generated by increasing the value of n using u0 = 0.5 and u0 = 3.

Intensity for various number of points used

Value of u0 n I/I0
0.5 4 0.831426329

8 0.725345098
16 0.685487426
32 0.667975144
64 0.659743279
128 0.655749794
256 0.653782658
512 0.652806371
1024 0.652320032
2048 0.652077313
4096 0.651956065
8192 0.651895469

3 4 6.5
8 1.40114698
16 1.30592871
32 1.21038629
64 1.15935746
128 1.1335322
256 1.12058522
512 1.11410768
1024 1.11086842
2048 1.10924873
4096 1.10843888
8192 1.10803395

Using 8,192 points in my trapezoid rule calculation, x0 and therefore u0 was varied between -1 and
4 at evenly spaced increments totalling 200 sample points. The results below were interpreted by
MATLAB after being outputted to a text file from the original program.

As x0 approaches zero, each of the integrals C(u0) and S(u0) approach zero, leaving I/I0 to
approach 0.25. Upon inspection in MATLAB, my function approaches this value accurately. As x0
gets higher, the integrals C(u0) and S(u0) oscillate over more and more and more cycles of cos(x2)
and sin(x2) respectively. Since those functions swing between -1 and 1 more and more rapidly as
u0 gets large, the integral approaches that of the infinite integral:

S(∞) =

∫ ∞

0
sin

(
π

2
u2
)
du = 0.5 (5)

Since C(∞) has the same characteristic limit, I/I0 should oscillate around, and slowly approach 1.
Below, my graph confirms both of these conditions.



AEP4380, Homework 2, Gregory Kaiser, Fall 2019 3

Figure 1: Intensity as a function of edge distance.

References

[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes, The Art
of Scientific Computing. (3rd edit.), Cambridge Univ. Press, 2007, (ISBN 978-0-521-88068- 8,
QA297 .N866 2007)



AEP4380, Homework 2, Gregory Kaiser, Fall 2019 4

Source Code

/* AEP 4380 Assignment #2

Numerical Integration - use the trapezoid method

to calculate intensity of light incident on an opaque edge

using Fresnel integrals.

Run on core i7 with gcc version 8.2.0 (MinGW.org GCC-8.2.0-3)

Gregory Kaiser Sept 18 2019

*/

#include <cstdlib>

#include <cmath>

#include <iostream>

#include <fstream>

#include <iomanip>

using namespace std; //makes writing code easier

double ceval(double, int);

double seval(double, int);

double ieval(double, int);

double pi = 4.0*atan(1.0);

double C_INF = -0.5,S_INF = -0.5; //obviously not space efficient but more clear

int main(){

int i;int n=200;

double u_0, x_0 = -1.0e-6, lambda=0.5e-6, z=1.0e-6, x_0_min = -1.0e-6, x_0_max = 4.0e-6;

ofstream fp; //output file for table

fp.precision(9);

fp.open("hw2_1.dat");

if(fp.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS); //defined by standard library

}

ofstream fp2; //output file for graph

fp2.precision(6);

fp2.open("hw2_2.dat");

if(fp2.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS); //defined by standard library

}

//set u_0 for calculating the same integral with different numbers of points

u_0 = 0.5;

double I_over_I_0;

//uses i as the point variable during iteration

for (i=4;i<=8192;i=i*2){

I_over_I_0 = ieval(u_0,i);

//write data into a file for matlab to parse. needs to be in separate columns

fp << setw(15) << I_over_I_0 << setw(15) << u_0 << setw(15) << i << endl;



AEP4380, Homework 2, Gregory Kaiser, Fall 2019 5

}

//reset u_0 and repeat

u_0 = 3;

for (i=4;i<=8192;i=i*2){

I_over_I_0 = ieval(u_0,i);

//write data into a file for matlab to parse. needs to be in separate columns

fp << setw(15) << I_over_I_0 << setw(15) << u_0 << setw(15) << i << endl;

}

//now pick a value for n that gives decent precision and vary u_0 using x_0

n=8192;

u_0 = x_0*sqrt(2/(lambda*z));

int points = 200;

double dx = (x_0_max-x_0_min)/(points-1); //used to avoid accumulation of error

for(i=1;i<=points;i++){

I_over_I_0 = ieval(u_0,n);

//write data into a file for matlab to parse. needs to be in separate columns

fp2 << setw(15) << I_over_I_0 << setw(15) << x_0 << setw(15) << i << endl;

//step u_0 along with x_0

x_0 = x_0_min+i*dx;

u_0 = x_0*sqrt(2/(lambda*z)); //is this too imprecise? would defining a umin and umax make it any more accurate?

}

fp.close();

fp2.close();

return(EXIT_SUCCESS);

} //end main

//evaluates I as a function of u_0 and n

double ieval(double u_0, int n){

double C_0 = ceval(u_0,n);

double S_0 = seval(u_0,n);

double ival = (((C_0-C_INF)*(C_0-C_INF))+((S_0-S_INF)*(S_0-S_INF)))/2;

//printout

//cout << setw(15) << "I_over_I_0 = "<< ival << setw(15) << "u_0 = " << u_0 << setw(15) <<"n = "<< n << endl;

return ival;

} //end ieval

//evaluates the integral C(u_0) using a trapezoid method

double ceval(double u_0, int n){

//store an initial point which will then be used as a previous value during integration

double prev = 1;

double u=0;

double du = u_0/(n-1); //n is the # of points, n-1 is the number of intervals

double cur = 1;

double sum = 0;

for (int i=0;i<n;i++){

u=i*du;

prev = cur;

cur = cos(pi*u*u/2);

sum = sum+(prev+cur)/2;

} //end for loop

sum = sum*du; //factor out common expression

return sum;

} //end ceval

//evaluates the integral S(u_0) using a trapezoid method

double seval(double u_0, int n){

//store an initial point which will then be used as a previous value during integration



AEP4380, Homework 2, Gregory Kaiser, Fall 2019 6

double prev = 0;

double u=0;

double du = u_0/(n-1); //n is the # of points, n-1 is the number of intervals

double cur = 0;

double sum = 0;

for (int i=0;i<n;i++){

u=i*du;

prev = cur;

cur = sin(pi*u*u/2);

sum = sum+(prev+cur)/2;

} //end for loop

sum = sum*du;

return sum;

} //end seval


