
AEP 4380: Homework 3

Gregory Kaiser

September 25th, 2019

1 Problem Background and Solution Overview

In this assignment, I found the roots of a function via two methods of root finding: the bisection
method, and Regula Falsi, aka the False Position method. Both methods require the assumption
that a single root exists within the range given to execute properly. If more than one root lies
between the range of values being searched, either method will fail to return all of the desired
values.

I was asked to find all values of x that satisfy the following:

J0(x)Y0(x) = J2(x)Y2(x) (1)

Which is the same as asking where:

J0(x)Y0(x) − J2(x)Y2(x) = 0 (2)

In other words, find the roots of the expression on the left hand side of equation 2.

After verifying that my function calls were operating properly, I found the first 5 solutions to
equation 2 using both bisection and Regula falsi. I then compared the number of evaluations that
each algorithm took to generate a root to within the same tolerance value.

2 Solution Description

The first part of my main function simply uses the downloaded header file Bessel.h in order to
generate the first three Bessel Functions of the First Kind (J0), and the first three Bessel functions
of the Second Kind (Y0). I plotted them to confirm that I was accessing the correct functions.

I also used these functions in order to test my bisect and Regula Falsi functions, since their roots
are well-known and easily found online.
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Figure 1: Bessel functions of the First Kind

Figure 2: Bessel functions of the Second Kind

2.1 Bisect

I then implemented bisect by using a method header that took an arbitrary function as its argument.
So as not to worry about the types Doub and Int in the Bessel function library, I nested those
function calls within my own functions above main(). The bisect method also took bounds and a
tolerance value.

The bisection method resembles a binary search, where a range of possible positions is found by
narrowing the current range by about 50% repeatedly. Between two values on the domain (x1 and
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x2), bisect finds the value halfway between those (x3), and checks the sign of the function at that
point (f3) against the sign of the function evaluated at the original bounds (f1 and f2). If it has the
same sign as, say, f1, then f3 becomes the new lower bound for the next iteration of the function.
The root is closed in on rapidly in this way, until f3 is within the tolerance value of zero. The x3
value at which this loop terminates is the root of the function between those bounds.

Figure 3: A diagram of the first few iterations of the bisect method. [2]

If the bounds given to the function were the same, then the assumption that they bound a single
root is broken, and the function returns -1 to indicate that this is the case. Otherwise, it will start
the process of bisection as described.

I first tested this on a Bessel function of the first kind before moving forward.

2.2 Regula Falsi

I implemented Regula Falsi similarly, by using an arbitrary function as a parameter which is fed to
the algorithm along with bounds and a tolerance value.

Regula Falsi uses the slope evaluated using the points that bound the root to estimate where the
zero would be, as if it were a linear function. The estimated slope is quite rough when the bounds
are far apart, but closes in on the actual value quickly for a well-behaved function.

Using the simple point slope formula, the zero point can be determined by the equation below:

(x3 − x1)
(f2 − f1)

(x2 − x1)
= −f1 (3)

Therefore,

x3 = x1 − f1
(x2 − x1)

(f2 − f1)
(4)

Which simply means that if you move along a line for distance x3-x1 with slope determined by f1
and f2, you should get back to zero from f1.
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The function is then evaluated at this estimated x3 point, and its sign is checked just like in bisect.
If it matches the sign of either f1 or f2, it becomes that side of the bounding values, but this time
much closer to the zero of the function, and the cycle is repeated.

Figure 4: A diagram of the first few iterations of the Regula Falsi method. [2]

If the original bounds are of the same sign, my Regula falsi function returns -1 just like bisect to
indicate the lack of roots.

I first tested this on a Bessel function of the first kind, before moving forward.

2.3 Finding the First Five Roots

In order to find the first five roots of equation 2, I needed to feed my bisect and Regula Falsi
methods the correct domains on which those roots lie. First, I plotted the function from equation
2 to take a look at what I was dealing with.
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Figure 5: The Homework Function

On an interval of about 0.5, I can be reasonably certain that a Bessel function of this kind won’t
oscillate across zero more than once. I therefore implemented a loop which steps over intervals
of this size and checks them for a root in succession until five roots are found. To be safe, I set
the interval to 0.25 for my final function. As this interval gets smaller, my algorithm becomes
less efficient, and it becomes less and less useful as the algorithm turns into simply evaluating a
function at every point until you cross zero. As it gets larger, however, it becomes more likely that
you will catch two roots inside the bounds, return -1 as if a root wasn’t found, and miss both of
them. Therefore the interval must be tuned slightly based on the function being analyzed.

3 Results and Interpretation

After running my root finding algorithm, I found the first five roots with both methods accurately.
I also outputted the number of function evaluation steps up to a given point in the program, to
compare the two. It is clear that Regula Falsi worked faster than Bisect for this given function,
since it evaluated the five roots in far fewer steps. I believe that this is due to the fact that equation
2, when plotted, looks like it is very nearly linear near its roots. This means that when Regula Falsi
is used, it will likely get very close to the root within a single iteration, given its inherent linearity.
Perhaps with a function less well behaved, Bisect could work faster than Regula Falsi under those
circumstances.
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Root found and efficiency of algorithm

Root number Root Value Total Bisect Eval-
uations

Total Regula Falsi
Evaluations

1 0.694391 20 7
2 2.92456 38 12
3 4.57483 54 15
4 6.18169 67 18
5 7.77338 78 20

These values can be confirmed at least to some certainty with a closer look at Figure 3.

In the future it could be beneficial to use a mixture of these methodologies to close in on a root
quickly. Using bisect to get to a narrower, more linear section, and then implementing Regula Falsi,
could perform even better than either of the methods alone.
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Source Code

/* AEP 4380 Assignment #3

Root Finding

Run on core i7 with gcc version 8.2.0 (MinGW.org GCC-8.2.0-3)

Gregory Kaiser Sept 25 2019

*/

#include <cstdlib>

#include <cmath>

#include <iostream>

#include <fstream>

#include <iomanip>

#include "../Library/nr3.h"

#include "../Library/bessel.h"

Bessjy Bessel; //an instance of the bessel function

using namespace std; //makes writing code easier

//typedef double Doub;

//typedef int Int;

double pi = 4.0*atan(1.0);

void bisect_Test();

void reguli_falsi_Test();

void bisect_hw();

double j_0(double);

double j_2(double);

double j_0(double);

double y_2(double);

double hw_func(double);

double xmin, xmax;

int n;

int function_evals_b=0;//the number of times that the bessel functions are evaluated

int function_evals_rf=0;

//finds the root of this function between x1 and x2 assuming

//that there is a root between x1 and x2.

double bisect( double(*f)(double), double x1, double x2, double tol){

//get starting values for f1 and f2

double f1 = f(x1);

//function_evals_b++;

double f2 = f(x2);

//function_evals_b++;

double x3 = (x1+x2)/2;//the x value between the first two points

double f3 = f(x3);

//function_evals_b++;

//while the points have opposite sign and also the point

//between them has a value above tolerance, continue the search

if((f2>0&&f1>0)||(f2<0&&f1<0)){

//if the initial values of f1 and f2 are of the same sign

//then we should assume that there is no root between them
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//and retry this function with a smaller interval to catch the

//even number of roots between these values

return -1; //should never be negative unless this condition is met

}

else{

while(abs(f(x3))>tol){

if((f3<0&&f1<0)||(f3>0&&f1>0)){

//f3 and f1 have the same sign

x1 = x3;

f1 = f3;

}

else{

//f3 and f2 have the same sign

x2 = x3;

f2 = f3;

}

x3 = (x1+x2)/2;

f3 = f(x3);

function_evals_b++;

}

return x3;

}

}//end bisect

//finds the root of this function between x1 and x2 assuming

//that there is a root between x1 and x2.

double reguli_falsi( double(*f)(double), double x1, double x2, double tol){

//get starting values for f1 and f2

double f1 = f(x1);

//function_evals_rf++;

double f2 = f(x2);

//function_evals_rf++;

double x3 = x1-f1*(x2-x1)/(f2-f1);//starting x3 value

double f3 = f(x3);//starting f3

//function_evals_rf++;

//while the points have opposite sign and also the point

//between them has a value above tolerance, continue the search

if((f2>0&&f1>0)||(f2<0&&f1<0)){

//if the initial values of f1 and f2 are of the same sign

//then we should assume that there is no root between them

//and retry this function with a smaller interval to catch the

//even number of roots between these values

return -1; //should never be negative unless this condition is met

}

else{

while(abs(f(x3))>tol){

if((f3<0&&f1<0)||(f3>0&&f1>0)){

//f3 and f1 have the same sign

x1 = x3;

f1 = f3;

}

else{

//f3 and f2 have the same sign

x2 = x3;

f2 = f3;

}

x3 = x1-(f1*(x2-x1)/(f2-f1));//the x value between the first two points

f3 = f(x3);
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function_evals_rf++;

}

}

return x3;

}//end Reguli Falsi

double j_0(double x){return Bessel.j0(x);}

double j_1(double x){return Bessel.j1(x);}

double j_2(double x){return Bessel.jn(2,x);}

double y_0(double x){return Bessel.y0(x);}

double y_1(double x){return Bessel.y1(x);}

double y_2(double x){return Bessel.yn(2,x);}

double hw_func(double x){return (j_0(x)*y_0(x))-(j_2(x)*y_2(x));}

int main(){

//Testing that the Bessel functions work

ofstream fp; //output file for j’s

ofstream fp2; //output file for ys

ofstream fp3; //output file for the homework function

fp.precision(9);

fp2.precision(9);

fp3.precision(9);

fp.open("hw3_1.dat");

if(fp.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS); //defined by standard library

}

fp2.open("hw3_2.dat");

if(fp2.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS); //defined by standard library

}

fp3.open("hw3_3.dat");

if(fp3.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS); //defined by standard library

}

//generate the set of bessel functions for plotting (part 1)

//simply confirms that my function calls are correct

//J’s first

xmax = 20;

xmin = 0;

n = 1000;

double dx = (xmax-xmin)/(n);

double j0[n];

double j1[n];

double j2[n];

double x = 0;

for (int i=0; i<n; i++){

x = i*dx;

j0[i] = j_0(x);

j1[i] = j_1(x);

j2[i] = j_2(x);

//write data into a file for matlab to parse. needs to be in separate columns

fp << setw(18) << j0[i] << setw(18) << j1[i] << setw(18)<<j2[i]<<setw(18) << x << endl;
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}

//now the Y’s

xmax = 20;

xmin = 0.75;

n = 1000;

//dx = (xmax-xmin)/(n);

double y0[n];

double y1[n];

double y2[n];

x = 0;

for (int i=0; i<n; i++){

x = i*dx;

y0[i] = y_0(x);

y1[i] = y_1(x);

y2[i] = y_2(x);

//write data into a file for matlab to parse. needs to be in separate columns

fp2 << setw(18) << y0[i] << setw(18) << y1[i] << setw(18)<<y2[i]<<setw(18) << x << endl;

}

//and now the hw_function in order to observe its behavior

xmax = 20;

xmin = 0.75;

n = 1000;

//dx = (xmax-xmin)/(n);

double output[n];

x = 0;

for (int i=0; i<n; i++){

x = i*dx;

output[i] = hw_func(x);

//write data into a file for matlab to parse. needs to be in separate columns

fp3 << setw(18) << output[i] << setw(18)<< x << endl;

}

//now evaluate the roots of the real homework function

bisect_hw();

cout<<"bisect evals: "<<setw(15)<<function_evals_b<<endl;

cout<<"reguli falsi evals: "<<setw(15)<<function_evals_rf<<endl;

//bisectTest();

fp.close();

fp2.close();

fp3.close();

return(EXIT_SUCCESS);

}//end main()

//hardcoded a bessel function to test my bisect function on

//a function with well known roots

void bisect_Test(){

double root = bisect(j_0,0,4,.001);

//root should return the first root of J0, which is approx: 2.4048

cout << root << endl;

//it gave 2.40625 so im happy with that

}//end bisect test

//hardcoded a bessel function to test my reguli falsi function on

//a function with well known roots

void reguli_falsi_Test(){
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double root = reguli_falsi(j_0,0,4,.001);

//root should return the first root of J0, which is approx: 2.4048

cout << root << endl;

//it gave 2.40487 so im happy with that

}//end bisect test

//Uses the bisect method to find the first five roots of the hw function

//by moving an interval that is much larger than the slowly moving oscillations

//of the function itself

void bisect_hw(){

/*using the bisect function*/

double root; //to store the root when it is found

double root_rf; //to store the root from reguli falsi separately

int num_roots=0; //the number of roots found so far

//The following assumes that the function does not cross zero

//more than once between intervals of int_tol, the interval tolerance

double int_tol = .25;

double int_xmin = .2; //the minimum of the interval being checked

//int_xmin is shifted slightly to the right to start since

//the special function goes to negative infinity at zero

double int_xmax = int_tol;

double int_num = 1; //the number of intervals checked

while(num_roots<5){

//find the next root

root = bisect(hw_func,int_xmin,int_xmax,.0000001);

root_rf = reguli_falsi(hw_func,int_xmin,int_xmax,.0000001);

if(root<=0){

//no root was found, move to next interval

int_xmin = int_num*int_tol; //keeps the interval to one multiplication error from value

int_xmax = int_xmin+int_tol; //should have multiplication and addition error

int_num++;

}

else{

//a root was found! record it and move to next interval

num_roots++;

cout << num_roots << setw(15)<< "b root: "<<root<<setw(15)<<"iterations: "<< function_evals_b<<setw(15)<< "rf root: "<<root_rf <<setw(15)<<"iterations: "<< function_evals_rf<< endl;

int_xmin = int_num*int_tol; //keeps the interval to one multiplication error from value

int_xmax = int_xmin+int_tol; //should have multiplication and addition error

int_num++;

}

}

}//end bisect_hw()

%

% MATLAB script to decode and plot AEP4380 data

% Gregory Kaiser 2019

%

load ’hw3_1.dat’

load ’hw3_2.dat’

load ’hw3_3.dat’

x = hw3_1(:,4);

y1 = hw3_1(:,3);

y2 = hw3_1(:,2);

y3 = hw3_1(:,1);

figure(1); hold on;
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a = plot(x,y1,’b-’);

b = plot(x,y2,’r-’);

c = plot(x,y3,’g-’);

axis([0 20 -1 1])

legend([a ;b; c],[’J_2’; ’J_1’; ’J_0’])

xlabel(’x’)

ylabel(’j0, j1, j2’)

x = hw3_2(:,4);

y1 = hw3_2(:,3);

y2 = hw3_2(:,2);

y3 = hw3_2(:,1);

figure(2);hold on;

a = plot(x,y1,’b-’);

b = plot(x,y2,’r-’);

c = plot(x,y3,’g-’);

axis([0 20 -1 1])

legend([a ;b; c],[’Y_2’; ’Y_1’; ’Y_0’])

axis([0 20 -1 1])

xlabel(’x’)

ylabel(’y0, y1, y2’)

x = hw3_3(:,2);

y = hw3_3(:,1);

figure(3);

a = plot(x,y,’b-’);

axis([0 20 -1 1])

legend([a],[’J_0Y_0-J_2Y_2’])

axis([0 20 -.2 .5])

xlabel(’x’)

ylabel(’homework function value’)

print -deps hw2_2.eps


