
AEP 4380: Homework 4

Gregory Kaiser

October 9th, 2019

1 Problem Background and Solution Overview

For this assignment, I was asked to implement a generalized 4th-order Runge-Kutta method for
a single time step, and then apply it to a chaotic system. While this method works for analytic
systems, it is most useful in propagating forward systems which require numerical solutions.

Runge-Kutta requires some overhead work before it can be properly used. If given a linear system
of order n, one must break down that system into a set of n first order equations. Once that is
done, one must generate a function referred to as derivs() in Numerical Recipes[1] which calculates
those first order derivatives as a function of the current state of the system (and the independent
variable). This function contains all the problem-specific physics, and is passed as a function pointer
to the Runge-Kutta method.

The methods that I implemented are very similar to the solution in Numerical Recipes, and I
haven’t done anything very fancy to change that solution other than making my variables slightly
more descriptive. This verifies that I understood what is happening at each line of code, and
it matches the explanation given in class. Professor Kirkland also showed us a ”sneaky” way to
allocate space for 5 arrays in one step and then delete them all during each call of the Runge-Kutta
method, which I used.

2 Solution Description

A saga of errors plagued my initial attempts at implementing both my derivative function and my
Runge-Kutta stepper method. By giving up on trying to teach myself pointers using the internet,
and by waiting until after the lecture explicitly on the implementation of this method, I arrived at
the solution described below.

I first created a harmonic oscillator derivatives function, which fills the derivatives array with
functions of the input state array. State contains y0 and y1 in that order. The output array
contains the derivatives dy0

dt and dy1
dt , also in that order.

The Runge-Kutta method first declares k1, k2, k3, k4, and temp as pointers before initializing k1 as
an array five-times the value of n eqns, which should be the size of any array describing the system.
k2 through temp were then initialized as locations along that array. Each was of size n eqns. This
is the ”trick” that Prof. Kirkland described which allows us to call ”new” and ”delete” only once,
since they are relatively expensive time-wise.
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The derivatives are placed into kn, which are off by a factor of h from the Kn described in Numerical
Recipes. For this reason, any time a kn value is used, it must be multiplied by a factor of h to give
a valid result.

At each step, before the next call to the derivative function, temp is filled with the current state
plus some shift dependent on the derivative call which was previously made. This follows the
Runge-Kutta algorithm exactly from Numerical Recipes. I am essentially having temp hold the
second argument to the f(x, y) function so that k1 through k4 follow the following set of equations:

k1 =
K1

h
= f(xn, yn) (1)

k2 =
K2

h
= f(xn +

h

2
, yn +

hk1
2

) (2)

k3 =
K3

h
= f(xn +

h

2
, yn +

hk2
2

) (3)

k4 =
K4

h
= f(xn + h, yn + hk3) (4)

where f(x, y) is just derivs(x, y, dy/dx). Then, the next state of the system can be calculated:

yn+1 = yn +
h

6
(k1 + 2(k2 + k3) + k4) (5)

and then the state is updated from a driver function so that the method can be used again.[1]

By testing the harmonic oscillator first, I was able to fix errors and verify that my implementation
worked (see Results and Interpretation). I was also able to add some damping to the oscillator to
verify that it behaved as I expected.

Moving on to the derivatives function for the Rössler system was as simple as declaring and ini-
tializing the constants a, b, and c, and following the format of the harmonic oscillator derivative
function for calculating each spot in the array.

The driver setup in main() needed only to set the number of equations correctly, initialize an array
of the state with some initial conditions, and declare the derivative array (it would be filled on the
first call to derivs() inside ghk rk4()). I set an initial and final time as an interval for a loop to use
the Runge-Kutta method repeatedly, but left the h value as a variable for easy modification. This
means that I might not land exactly on the final time specified, but I figured that h will be small
enough that it won’t matter a huge amount.

I did not use the vector classes from Numerical Recipes, but instead used simple arrays as my
vectors. While I could have stepped forward all three of the systems which I used in this assignment
into a single driver loop, I decided to make them three separate chunks of code. This allowed for
clarity, easier debugging, and easier tuning of values at the cost of efficiency.

3 Results and Interpretation

The first thing to do was to test my setup using the harmonic oscillator. The plots look qualitatively
correct as a good cosine wave with constant amplitude for a plot of y0(t). A circle appears in the
plot of y0 versus y1, also known as the phase space plot of position versus velocity for this one
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dimensional oscillator. To verify the period, I printed out the value of t whenever the Runge-Kutta
step returned a state that went from positive to negative.

An incomplete set of those numbers was: 1.57, 7.85, 14.13, 20.42... between each of those values is
T = 6.28 which corresponds to a period of 2π. Since the analytic solution of this system is cos(ωt),
this period and amplitude matches the harmonic oscillator of ω = 1.0 exactly.

(a) Harmonic Oscillator y0(t) (b) Phase Space plot of the Harmonic Oscillator

By adding a damping term in the derivatives function, which subtracts 0.2y1 from the derivative
of y1, the system behaves as expected as well.

(a) Damped Harmonic Oscillator (b) Phase Space plot of the Damped Harmonic Oscillator

This gives me the confidence to say that my solutions to the Rössler system are also correct. To
find a good h value, I first looked at x(t) for an h value of about 0.1 and repeatedly changed h until
I thought it looked stable:
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(a) h=0.2 (b) h=0.015

(c) h=0.008 (d) h=0.002

There is a clear difference between h=0.2 and h=0.015 around the t=150 mark, but the differ-
ences become much more subtle as h decreases from there. By placing these images in the same
folder and scanning through them quickly on my computer, I was able to see those differences
more clearly. Since there was an imperceptible difference between h=0.008 and h=0.002, and just
barely a difference between h=0.008 and h=0.015, I decided to go with h=0.008 for the rest of the
assignment.

Plots of x(t), y(t), and z(t) looked strange, but didn’t jump out to me as being chaotic until I looked
for periodicity and couldn’t find it. The real indicator of chaos was that the phase space plots of
z(t) versus x(t) and x(t) versus y(t) were not single loops. They did orbit around in a circuit,
however, which is consistent with the ”attractor” characteristics of some chaotic phase space plots.
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(a) z(t) (b) y(t) versus x(t)

(c) z(t) versus x(t) (d) y(t) versus z(t)

The three dimensional plot of x(t) vs y(t) vs z(t) at this point was quite interesting:

Figure 1: Three-dimensional plot of the Rössler System using plot3() in MATLAB
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The physical interpretation of these results is difficult, since the system is chaotic, but I can say
that my results match documentation on the Rössler system in general.[4] I could say that there is
a kind of attractor in both the z(t) versus x(t) and the y(t) versus x(t) plots, since they both seem
to circle around in a three-dimensional circuit.

Optional:
Using the same constants a, b, and c, I changed the starting point of the system slightly:

(a) x(0)=0.0; y(0)=-6.78; z(0)=0.02 (b) x(0)=0.0; y(0)=-6.77; z(0)=0.02

(c) x(0)=0.01; y(0)=-6.78; z(0)=0.02

It was most obvious to see the sensitivity of the system when looking at plots of z(t). Sensitivity
to these small changes to initial conditions is also a hallmark of chaotic systems.

I was also able to easily change the values of a, b, and c easily, to see what would happen:
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(a) x(t) for a=0.1; b=0.2; c=5.7 (b) x(t) versus y(t) for a=0.1; b=0.2; c=5.7

Changing a to 0.1 produced a system which became periodic and therefore not chaotic very rapidly.

(a) x(t) for a=0.2; b=1; c=5.7 (b) x(t) versus y(t) for a=0.2; b=1; c=5.7

By changing b to 1.0 I observed a kind of period doubling which I also recognize from chaotic
systems in AEP 3330.

(a) x(t) for a=0.2; b=0.2; c=2.0 (b) x(t) versus y(t) for a=0.2; b=0.2; c=2.0

It is clear that using c=2.0 makes this system behave periodically and non-chaotically after a short
period of time.
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Just for fun, I decided to make the Lorenz system because I’ve seen the ”butterfly” before but
haven’t had the opportunity to plot it myself. I had to take cues from Wikipedia for values of
the constants that are used (I just looked at the values used to get the butterfly image I want),
but I took the form of the derivatives function from Edward Lorenz’s 1963 paper on Deterministic
Nonperiodic Flow.[2][3]

Figure 2: Three-dimensional plot of the Lorenz System using plot3() in MATLAB
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Source Code

/* AEP 4380 Assignment #4

Ordinary Differential Equations and Chaotic Systems:

Implementation of a 4th order Runge-Kutta method.

Simulated the Rossler System, similar to the Lorenz system.

Run on Windows core i7 with gcc version 8.2.0 (MinGW.org GCC-8.2.0-3)

Gregory Kaiser October 9th 2019

*/

#include <cstdlib>

#include <cmath>

#include <iostream>

#include <fstream>

#include <iomanip>

using namespace std; //makes writing code easier

int i,j; //just iteration variables

const double a=.2,b=.2,c=5.7,w=1.0; //the constants that I will use in generating the derivative functions

//const double a=.1,b=.2,c=5.7,w=1.0; //a different set of constants for changing a

//const double a=.2,b=1,c=5.7,w=1.0; //a different set of constants for changing b

//const double a=.2,b=.2,c=2,w=1.0; //a different set of constants for changing c

double tol = 1e-6; //a tolerance for checking the period of the harmonic oscillator

//constants for the lorenz system were pulled from wikipedia, just for convenience

double sigma = 10.0, r = 28.0, b2=8.0/3.0;

//Calculates the derivative of each first order function for propagation

//being fed the current state, and fills the derivatives array

void hw_derivs(double t, double state[], double dstate_dt[]) {

dstate_dt[0] = -state[1]-state[2];//the derivative of x during moment state dxdt=-y-z

dstate_dt[1] = state[0]+a*state[1];//the derivative of y during moment state dydt = x+ay

dstate_dt[2] = (b+state[2]*(state[0]-c));//the derivative of z during moment state dzdt = b+z(x-c)

}

//Calculates the derivative of each first order function for propagation

//is fed the current state and time and fills the derivatives array

void harm_osc_derivs(double t, double state[], double dstate_dt[]){

dstate_dt[0] = state[1]; //dy_0/dt = y1

//below: dy_1/dt = -w*w*y_0

dstate_dt[1] = -w*w*state[0];//-.2*state[1];//includes a damping term used to verify solution

}

//Calculates the derivative of each first order function for propagation

//is fed the current state and time and fills the derivatives array

//this system setup is described in Edward Lorenz’s 1963 paper

void lorenz_derivs(double t, double state[], double dstate_dt[]){

dstate_dt[0] = sigma*(-state[0]+state[1]);//the derivative of x during moment state dxdt=-sigma*x-_sigma*y

dstate_dt[1] = -state[0]*state[2]+r*state[0]-state[1];//the derivative of y during moment state dydt = -s*z+r*x-y

dstate_dt[2] = state[0]*state[1]-b2*state[2];//the derivative of z during moment state dzdt = x*y-b*z

}

//General Purpose 4th order Runge-Kutta method with t as the only independent variable

//and state containing n_eqns (a number of) dependent variables. Is fed the state, time, h step, and a derivative function

//which contains all of the problem specific information
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void ghk_rk4(double *state, double *new_state, double t, double h, int n_eqns, void (*derivs)(double, double[], double[])){

double *k1,*k2,*k3,*k4,*temp;

k1 = new double[n_eqns*5]; //clever trick that Prof. Kirkland used in class to initialize all the arrays at once with "new".

k2 = k1 + n_eqns;

k3 = k2 + n_eqns;

k4 = k3 + n_eqns;

temp = k4 + n_eqns;

derivs(t, state, k1); //information about the starting point

for (i=0;i<n_eqns;i++){

//fills temp with first step from starting point

temp[i] = state[i]+0.5*h*k1[i];

}

derivs(t+h*0.5, temp, k2); //use temp to generate a set of predicted derivatives

for (i=0;i<n_eqns;i++){

//fills temp with second step from starting point

temp[i] = state[i]+0.5*h*k2[i];

}

derivs(t+h*0.5, temp, k3); //use temp to generate another set of predicted derivatives

for (i=0;i<n_eqns;i++){

//fills temp with third step from starting point

temp[i] = state[i]+h*k3[i];

}

derivs(t+h, temp, k4); //final step of predicted derivatives

for (i=0;i<n_eqns;i++){

//accumulate all of the derivatives with proper weights to have a prediction

//with error O(h^5)

new_state[i] = state[i]+(h/6.0)*(k1[i]+2.0*(k2[i]+k3[i])+k4[i]);

}

delete []k1; //clear space since this method is used repeatedly for small step sizes

return;

}

int main(){

ofstream fp; //output file for testing

fp.precision(5);

fp.open("hw4_1.dat");

if(fp.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}

ofstream fp2; //output file for the hw function

fp2.precision(5);

fp2.open("hw4_2.dat");

if(fp2.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}

ofstream fp3; //output file for the hw function

fp3.precision(5);
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fp3.open("hw4_3.dat");

if(fp3.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}

//HW Assignment

//-------------------------HARMONIC OSC----------------------------------

//test with the harmonic oscillator

int neqn = 2, istep, nstep=30000;

//The state vector contains the initial conditions

double harm_state[neqn]= {1.0,0.0}; //in this case, y_0=1.0, and y_1=0.0

double harm_new_state[neqn]; //initially empty new state

double t_init=0.0,t_final=50.0, t, h=.01;

for (istep=0;t<=t_final;istep++){

t=t_init+istep*h;

//output current value stored in state before updating

fp<<harm_state[0]<<setw(15)<<harm_state[1]<<setw(15)<<t<<endl;

//fill new state and update old

ghk_rk4(harm_state, harm_new_state, t, h, neqn, harm_osc_derivs);

if (harm_new_state[0]<=0&&harm_state[0]>0){

//prints out the zeroes (or close enough) so that I can

//verify the period at a glance to the terminal

cout<<t<<endl;

}

for (i=0;i<neqn;i++){

harm_state[i] = harm_new_state[i];

}

}

//--------------------------THE ROSSLER SYSTEM---------------------------------------------

//now test the actual homework function

neqn = 3;

double hw_state[neqn]= {0.00,-6.78,.02}; //initial conditions {x,y,z}

//double hw_state[neqn]= {0.0,-6.77,.02}; //initial conditions {x,y,z}

//double hw_state[neqn]= {0.01,-6.78,.02}; //initial conditions {x,y,z}

double hw_new_state[neqn];

t_init=0.0,t_final=200.0,t=t_init,h=.008;

for (istep=0;t<=t_final;istep++){

t=t_init+istep*h;

//output current value stored in state before updating

fp2<<hw_state[0]<<setw(15)<<hw_state[1]<<setw(15)<<hw_state[2]<<setw(15)<<t<<endl;

//fill new state and update old

ghk_rk4(hw_state, hw_new_state, t, h, neqn, hw_derivs);

for (i=0;i<neqn;i++){

hw_state[i] = hw_new_state[i];

}

}

//--------------------------THE LORENZ SYSTEM---------------------------------------------

//just for fun

neqn = 3;

double lorenz_state[neqn]= {10,3,4}; //initial conditions {x,y,z}

double lorenz_new_state[neqn];

t_init=0.0,t_final=200.0,t=t_init,h=.008;

for (istep=0;t<=t_final;istep++){

t=t_init+istep*h;

//output current value stored in state before updating

fp3<<lorenz_state[0]<<setw(15)<<lorenz_state[1]<<setw(15)<<lorenz_state[2]<<setw(15)<<t<<endl;

//fill new state and update old

ghk_rk4(lorenz_state, lorenz_new_state, t, h, neqn, lorenz_derivs);

for (i=0;i<neqn;i++){
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lorenz_state[i] = lorenz_new_state[i];

}

}

fp.close();

fp2.close();

fp3.close();

return(EXIT_SUCCESS);

} //end main


