
AEP 4380: Homework 7

Gregory Kaiser

November 8th, 2019

1 Problem Background and Solution Overview

The one-dimensional time-dependent Schrödinger equation is important to understanding quan-
tum systems in general. In many introductory-level quantum mechanics courses, the interaction
of a quantum mechanical plane wave with a step function potential is discussed in order to mo-
tivate transmission and reflection across a potential barrier. By solving the Schrödinger equation
numerically, one has the freedom not only to manipulate the potential barrier but also the initial
wavefunction itself. This report investigates the interaction of a gaussian quantum-mechanical wave
packet with a finite potential step.

The time-dependent Schrödinger equation, with a potential function V (x), is:

ih̄
∂

∂t
ψ = − h̄2

2m

∂2

∂x2
ψ(x, t) + V (x)ψ(x, t) (1)

Where h̄ = 6.5821× 10−16eV s and h̄
2m = 3.801eV A2 for an electron[2]. The potential step function

is an imperfect one, that is the potential function is not a sudden Heaviside step, but rather a very
sharp S-shaped curve:

V (x) =
V0

1 + exp[0.5L−x
ωv

]
(2)

where L = 1000 Angstroms, V0 = 3.90eV and ωv = 7 Angstroms. The initial condition for the
wavefunction, ψ(x, 0), is a Gaussian packet which travels to the right as time progresses:

ψ(x, t = 0) = exp

[
−
(
x− 0.3L

s

)2

+ ixk0

]
(3)

where s = 20 Angstroms and k0 = 1 Angstrom−1. This packet begins its journey to the left of the
potential step, where V (x) = 0:

1

AEP4380, Homework 7, Gregory Kaiser, Fall 2019 2

Figure 1: The real component of ψ at t=0.

Intuitively, it should then collide with the potential barrier and transmit/reflect depending on the
wavepacket strength and potential barrier height. The solution was calculated along a range of
1000 Angstroms and for times between 1e-14 and 5e-14 seconds.

As a convention, ψ(x, t) will now be denoted ψtx or ψji .

2 Solution Description

In order to solve this problem, the function ψ must be solved over a range in space and propagated
to the next point in time. Since wavefunction solutions to Schrödinger’s equation are complex in
general, a complex data type now in C++ must be used. In tandem with the arrayt class, arrays
of complex numbers are generated easily [2][3].

First ψ is initialized as a complex array, along with appropriate constant values, and filled with
ψ0
x with a spacing of dx. Since the complex and real parts of ψ are hidden in their exponential

form, Euler’s Identity breaks up ψ0
x into its component real and imaginary components. Since the

average wavenumber is 1 Angstrom−1, and since k0 = 2π
λ0

, λ
10 ≈ 0.6. By overlaying plots of ψ0

x, and
ensuring that dx was less than the smallest wavelength component of ψ, dx was maintained at 0.1
Angstroms to be on the safe side.

Since we are given a starting function for ψ0
x we can use the Crank-Nicholson method to approximate

the solution for ψ∆t
x at the next time step. In finite difference form, the Schrödinger equation is

then given by:

ψt+∆t
x−∆x+

[
2miω

h̄
− 2− 2m∆x2

h̄2 V (x)

]
ψt+∆t
x +ψt+∆t

x+∆x = −ψtx−∆x+

[
2miω

h̄
+ 2 +

2m∆x2

h̄2 V (x)

]
ψtx−ψtx+∆x

(4)

where w = 2∆x2/∆t [2]. This equation can be written as a tridiagonal system of equations:

AEP4380, Homework 7, Gregory Kaiser, Fall 2019 3



b0 c0

a1 b1 c1 0
a2 b2 c2

. . .

0 aNx−2 bNx−2 cNx−2

aNx−1 bNx−1





ψ0

ψ1

ψ2
...

ψNx−2

ψNx−1


=



d0

d1

d2
...

dNx−2

dNx−1


[2] such that:

aiψ
n+1
i−1 + biψ

n+1
i + ciψ

n+1
i+1 = di (5)

A tridiagonal matrix can be solved by converting the matrix to upper diagonal form and then
substituting to solve for unknown values:

//step 1, do the special first row case of the process

c(0) = c(0)/b(0);

d(0) = d(0)/b(0);

//step 2, replace all the c values with their value if a<--0 and b<--1 "ZIP"

for(i=1; i<=n-2; i++){

c(i) = c(i)/(b(i)-a(i)*c(i-1));

}

//step 2, replace all the d values with their value if a<--0 and b<--1 "ZIP"

for(i=1; i<=n-1; i++){

d(i) = (d(i)-a(i)*d(i-1))/(b(i)-a(i)*c(i-1));

}

//step 3, set last solution to d

soln(n-1) = d(n-1);

//backpropagate the solution "ZAP"

for(i=n-2; i>=0; i--){

soln(i) = d(i)-c(i)*soln(i+1);

}

where the above was made as a template so that any arbitrary matrix can be solved in this
manner[2]. Since ai, bi, ci, and di are complex valued, arithmetic works normally using the C++
complex type.

However, the values of ai, bi, ci, and di must be recalculated at each step in time. Following
equation 4 it is clear that ai = 1 + 0i and ci = 1 + 0i for each time step. The complex arrays bi
and di take on more complicated values based on the complex and real parts of the multiplicative
factor on ψ(x, t+ ∆t) and the terms on the right hand side of equation 4. These terms also involve
the potential function at that value of x.

bi =

[
2miω

h̄
− 2− 2m∆x2

h̄2 V (i)

]
(6)

AEP4380, Homework 7, Gregory Kaiser, Fall 2019 4

di = −ψji−1 +

[
2miω

h̄
+ 2 +

2m∆x2

h̄2 V (i)

]
ψji − ψ

j
i+1 (7)

To keep the algorithm simpler, ai, bi, ci, and di were made to be the same length. In tridiag, a0

and cNx−1 are ignored, though they are set to 1 by default while being calculated.

In order to account for the fact that ψ−1 and ψNx are held at zero, those terms are omitted at the
boundary while calculating d0 and dNx−1.

Once those arrays are generated, the solver described above, ghk tridiag, is called, which takes
arrayt’s of arbitrary type and fills the final argument with ψt+∆t

x (the solution at the next timestep).

A for loop controls the propagation in time, so by tuning the time tmax, the algorithm ends at any
specified time for printing to an output file.

By generating a few plots with different time steps dt, but while holding the final t constant, a dt
of 1e-16 was determined to be plenty precise enough to be safe for production of final results, while
keeping compute time at a reasonable level of a couple seconds.

3 Results and Interpretation

The imaginary and real parts of ψ and V (x) are plotted for t=0 to show all initial conditions:

Figure 2: Left: The real and complex parts of ψ at t=0. Right: A detailed view of the real and
complex parts.

A plot of |ψ|2 at t=0 can be found in Figure 3.

The following plots show |ψ|2 plotted at times t=0, 1e-14, 2e-14, 3e-14, 4e-14, and 5e-14 seconds
of propagation. The integral of |ψ|2 remained constant around 25.

AEP4380, Homework 7, Gregory Kaiser, Fall 2019 5

Figure 3: The norm of the wavefunction |ψ|2 plotted at different times to show time-dependent
propagation

These results make physical sense, as it is clear that some of the wavefunction propagates into the
finite step, as a quantum wave should, while some significant chunk is reflected backwards. The
most interesting part of these results is the secondary ”hump” on the right tail of the reflected wave.
In order to check that this isn’t an error, this algorithm was tested using a ”perfect” Heaviside step
function (instantaneous change) with much higher potential, which showed a more clean reflection

AEP4380, Homework 7, Gregory Kaiser, Fall 2019 6

of the wave as expected:

Figure 4: After 5e-15 seconds, it’s clear that the wavepacket has bounced almost entirely off of the
sharper boundary.

In addition, an online simulator shows that, given the right parameters for a step function potential,
a quantum wave can develop this second hump given a non-zero ”ramp” value, which allows one
to change the slope of the rise to high potential. Looking more closely at the potential given in the
assignment, it is possible that the curvature at the corners of the potential cause this second hump
to appear naturally during reflection.

Figure 5: Comparing an online simulator with the results for the real part of ψ matches this
secondary bump in the wavefunction.[4]

This simulator could be extrapolated into more dimensions with more complicated formulas, but as
it stands could be used to produce a more intuitive picture of quantum mechanical wave propagation
for undergraduate classwork. Unbounded by the blackboard, simulations like those found on the
internet can provide a much more valuable sense of physical intuition and reality.

AEP4380, Homework 7, Gregory Kaiser, Fall 2019 7

To investigate the dynamics a bit further, the wavepacket is sent through a potential well of -30eV
between 500 and 700 Angstroms. The following plots show the interaction of the packet with the
new potential:

Figure 6: Interaction with a potential well at t=1e-14s, 3e-14s, 4e-14s, 5e-14s, 6.5e-14s.

These results are also quite interesting since there is a trapped piece of the pulse hitting alternate
walls and sending pieces of itself through the barrier with each impact. This wave also dies away
in magnitude as the energy is split between the spawned pulses.

AEP4380, Homework 7, Gregory Kaiser, Fall 2019 8

References

[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes, The Art
of Scientific Computing. (3rd edit.), Cambridge Univ. Press, 2007, (ISBN 978-0-521-88068- 8,
QA297 .N866 2007)

[2] Kirkland, Earl. Time Dependent Schrödinger Equation. AEP 4380 Fall 2019 Assignment 7.
https://courses.cit.cornell.edu/aep4380/secure/hw07f19.pdf

[3] Kirkland, Earl. Array Class Objects in C/C++ for Vectors and Matrices AEP 4380 Fall 2019.
https://courses.cit.cornell.edu/aep4380/secure/arrayt.hpp

[4] Schroeder, Daniel V. Quantum Barrier Scattering Physics Department of Weber State Univer-
sity. https://physics.weber.edu/schroeder/software/BarrierScattering.html

AEP4380, Homework 7, Gregory Kaiser, Fall 2019 9

Source Code

/* AEP 4380 Assignment #7

Time Dependent Schrodinger Equation

Run on Windows core i7 with gcc version 8.2.0 (MinGW.org GCC-8.2.0-3)

Gregory Kaiser November 6th 2019

*/

#include <cstdlib>

#include <cmath>

#include <iostream>

#include <fstream>

#include <iomanip>

#define ARRAYT_BOUNDS_CHECK

#include "arrayt.hpp"//from Prof. Kirkland’s https://courses.cit.cornell.edu/aep4380/secure/arrayt.hpp

#include <complex> //complex data type in C++

using namespace std; //makes writing code easier

typedef complex<double> Complex; //shorthand for declaring a complex variable

typedef arrayt<Complex> arrayc; //shorthand for declaring a complex array

int i,j;//loop variable

//----------physical constants-----------

double hbar = 6.5821e-16;//eVs

double hbar2_2m_elec = 3.801;//eV(A^2)

template <class T>

void ghk_tridiag(arrayt<T>& a, arrayt<T>& b, arrayt<T>& c, arrayt<T>& d,

arrayt<T>& soln){//a version of tridiag

int n = a.n1();

//step 1, do the special first row case of the process

c(0) = c(0)/b(0);

d(0) = d(0)/b(0);

//step 2, replace all the c values with their value if a<--0 and b<--1 "ZIP"

for(i=1; i<=n-2; i++){

c(i) = c(i)/(b(i)-a(i)*c(i-1));

}

//step 2, replace all the d values with their value if a<--0 and b<--1 "ZIP"

for(i=1; i<=n-1; i++){

d(i) = (d(i)-a(i)*d(i-1))/(b(i)-a(i)*c(i-1));

}

//step 3, set last solution to d

soln(n-1) = d(n-1);

//backpropagate the solution "ZAP"

//cout<<soln(300)<<endl;

for(i=n-2; i>=0; i--){

soln(i) = d(i)-c(i)*soln(i+1);

}

}

int main(){

ofstream fp;//output for psi real

fp.precision(8);

fp.open("hw7_1.dat");

if(fp.fail()){

AEP4380, Homework 7, Gregory Kaiser, Fall 2019 10

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}

ofstream fp2;//output for potential function

fp2.precision(9);

fp2.open("hw7_2.dat");

if(fp2.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}

ofstream fp3;//output for complex part

fp3.precision(9);

fp3.open("hw7_3.dat");

if(fp3.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}

//HW Assignment

//-----define bounds and spacing---

double xmin=0, xmax=1000, dx=.1;//bounds and step size in position

double tmin=0, tmax=5e-14, dt=1e-16;//bounds and step size in time

double w = 2*dx*dx/dt;//omega definition for use in calculation later

//calculate number of steps needed for while loop

int Nx = (int) ((xmax-xmin)/dx) + 1; //number of points in x to calculate, rounds based on bounds

int Nt = (int) ((tmax-tmin)/dt) + 1; //number of time steps to calculate, rounds based on bounds

double t=tmin;

//----problem initialization-----

arrayc psi(Nx);//solution at a given time step

arrayc Vtest(Nx); //a testing potential well, finite square well

arrayc Vhw(Nx);//the homework potential well

arrayc Vextra(Nx);//an extra potential

//----define psi and V at t=0 as an initial condition

double k_0 = 1;//Angstrom^-1 average wavenumber for gaussian starting shape

double s = 20;//width of the gaussian starting shape

double V_0 = 3.9;//eV height of potential well

double w_v = 7;//Angstroms parameter of potential well

//----intialize Vtest and Vhw and psi for all x---

double curx; //just convenience

for(i=0;i<Nx;i++){

curx = i*dx;

//testing potential

if(curx>500){

Vtest(i) = 20;

}

else{

Vtest(i) = 0.0;

}

//extra potential

if(curx>500&&curx<700){

Vextra(i) = -30;

}

AEP4380, Homework 7, Gregory Kaiser, Fall 2019 11

else{

Vextra(i) = 0.0;

}

//hw potential

Vhw(i) = Complex(V_0/(1+exp(0.5*(xmax-xmin)-curx)/w_v),0);

//psi initialization

psi(i) = Complex(exp(-((curx-0.3*(xmax-xmin))/s)*((curx-0.3*(xmax-xmin))/s))*cos(curx*k_0),

exp(-((curx-0.3*(xmax-xmin))/s)*((curx-0.3*(xmax-xmin))/s))*sin(curx*k_0));

fp<<psi(i).real()<<setw(20)<<psi(i).imag()<<setw(20)<<norm(psi(i))<<setw(15)<<

curx<<setw(15)<<0<<endl;//output initial condition of psi

fp2<<Vhw(i).real()<<setw(15)<<curx<<endl;//output the potential for display

//fp2<<Vtest(i).real()<<setw(15)<<curx<<endl;//output the potential for display

//fp2<<Vextra(i).real()<<setw(15)<<curx<<endl;//output the potential for display

}

//initialize the arrays that we will feed to tridiag

arrayc a(Nx);

arrayc b(Nx);

arrayc c(Nx);

arrayc d(Nx);

//constants associated with the psi(x,t) term

//(2mwi/hbar)-2-(2mdx^2/hbar^2)V(x)

double complex_term = w/hbar2_2m_elec*hbar;

double pot_factor = dx*dx/hbar2_2m_elec;

double integral=0;

Complex multiply;

for(j=0;j<Nt;j++){

t=j*dt;//constant time steps means we can do this more precise calculation of the time

for(i=0;i<Nx;i++){

//compute the value of a, b, c for every position of psi

//with the Crank-Nicholson formulae

a(i) = Complex(1,0);

c(i) = Complex(1,0);

//-------use the below for using the actual assigned hw potential

b(i) = Complex(-2-pot_factor*Vhw(i).real(), complex_term);

multiply = Complex(2+pot_factor*Vhw(i).real(), complex_term);

//-----use the below for testing with the "perfect" step function

// b(i) = Complex(-2-pot_factor*Vtest(i).real(), complex_term);

// multiply = Complex(2+pot_factor*Vtest(i).real(), complex_term);

//-----use the below for testing with the "perfect" step function

// b(i) = Complex(-2-pot_factor*Vextra(i).real(), complex_term);

// multiply = Complex(2+pot_factor*Vextra(i).real(), complex_term);

if(i==0){//special case since psi(-1)=0 doesn’t exist in the array but is a boundary

d(i) = (multiply)*psi(i)-psi(i+1);

}

else if (i==Nx-1){//special case since psi(Nx)=0 doesn’t exist but is a boundary

d(i) = -psi(i-1)+(multiply)*psi(i);

}

else{

d(i) = -psi(i-1)+(multiply)*psi(i)-psi(i+1);

}

}

//at this point, all of a, b, c, d are calculated for a single time step

//so feed into tridiag to get the next step of psi

ghk_tridiag(a, b, c, d, psi);

AEP4380, Homework 7, Gregory Kaiser, Fall 2019 12

//then move to the next time step with this modified psi

}

for(i=0;i<Nx;i++){

//print psi(i,Nt), the final value of psi at all positions

curx=i*dx;

fp3<<psi(i).real()<<setw(20)<<psi(i).imag()<<setw(20)<<norm(psi(i))<<

setw(15)<<curx<<setw(15)<<t<<endl;

integral+=norm(psi(i));

}

cout<<integral*dx<<endl;

fp.close();

fp2.close();

fp3.close();

return(EXIT_SUCCESS);

} //end main

