
AEP 4380: Homework 8

Gregory Kaiser

November 15th, 2019

1 Problem Background and Solution Overview

The analysis of data trends sometimes requires more sophisticated analysis than finding a simple
linear or exponential best fit line. Using a set of equations meant to model a set of data, parts of
the data that have a specific functional form can be extracted. Each of these terms has its own
physical significance and consequences on the overall trend.

Breaking a set of data into a sum of linear terms allows the calculation of a function which attempts
to approximate the data. This estimate function is given by:

f(t) =

m∑
k=1

akfk(t) (1)

Where m is the number of fitting equations being used, ak represents the coefficient of that partic-
ular term, and fk(t) represents one of the linear terms k evaluated at a particular time.

The reduced form of the chi-squared value takes into account the number of degrees of freedom
that could account for error, and therefore divides by the difference between the number of points
being approximated and the number of equations being used to approximate the data. It can give
some sense of how well the best fit function fits the data, and is given as:

χ2
r =

1

N −m

N∑
i=1

(
y(ti) − f(ti)

σ(ti)

)2

(2)

Where N is the number of data points in the set, y(ti) is the value of each point i, and σ(ti) is the
approximate error at each point. Finding the form of f(k, t) which fits the data set y(i) the best is
the same as minimizing this error estimate value.

This assignment finds a best fit function for the concentration of Carbon Dioxide (CO2) as measured
monthly from Baja California Sur, Mexico [3][4]. Using a parsing script provided [3], this data was
plotted, and clearly has an overlying upward trend, with seasonal variations every 12 months,
corresponding to an annual cycle:

1
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Figure 1: The raw data from Baja California Sur, Mexico. [4]

Assuming that the error at each point is approximately 0.1% and assuming that the seasonal
variation can be approximated as a 12-month sinusoidal along with its first (6-month) harmonic,
χ2
r is minimized to find a best fit line.

2 Solution Description

Minimizing the value of χ2
r boils down to solving the matrix equation

F~a = ~b (3)

Where F is the NxN matrix

Flk =

N∑
i=1

fl(ti)fk(ti)

σ2i
(4)

and b is the vector

bl =

N∑
i=1

y(ti)fl(ti)

σ2i
(5)

[3].

Using a given script for parsing the online data set [3], the data y(t) is stored in memory. The error
for each point is calculated by multiplying the data point by 0.001 corresponding to 0.1% error.

The function f(t) was written as a helper function which returns a double when fed an index k for
which function fk to use and a time t at which to evaluate fk. A switch case setup chooses the
correct function to perform using the input, and f(t) has seven terms corresponding to to following:
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f0(t) = 1

f1(t) = t

f2(t) = t2

f3(t) = cos(
2πt

12
)

f4(t) = sin(
2πt

12
)

f5(t) = cos(
2πt

6
)

f6(t) = sin(
2πt

6
)

F can then be generated by two for loops which step over all indices of its two dimensions. At each
element, the sum over all times generates that array element’s value following the formula from
equation 4. Since F is symmetric, the loops only iterate through the upper diagonal elements. The
array ~b is calculated similarly, but only looped over a single dimension, and uses the value of the
data at y(ti).

Gauss-Jordan Elimination is used to solve the matrix equation 3. A function called gaussj() from
Numerical Recipes [1] performs this matrix math in an efficient manner. Utilizing pivoting to avoid
dividing by a zero element, the result of gaussj(F ,~b) is to fill ~b with the matrix solution ~a and F
with its inverse, F−1. This function was adapted to use arrayt objects for familiarity and debugging
purposes, and was tested with a simple example to verify its efficacy [2].

After calculating the solution ~a, the actual function is formed using the formula in equation 1.
While generating the fitting function, a separate set of data is also written to represent the best fit
using only the first three components, which represent the constant, linear, and quadratic terms of
the fit. This function with fewer terms is the trend of the data without seasonal variations. The
residual plot is also generated easily from this point in the program.

The error for each term in the fitting function is given by:

σl =
√
F−1
kk (6)

Where l corresponds to the coefficient of the lth function component.

3 Results and Interpretation

With a χ2
r value of 1.17916, the following represents the seven-term best fit line generated using

the described method.
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Figure 2: The seven-term best fit curve with non-oscillatory function and residual plot.

Since the value of χ2
r was between 0.5 and 2.0, this curve is considered a good fit for the data, and

the fitting function does not deviate by more than 0.1% on average.

With a χ2
r value of 4.7563, the following represents the five-term best fit line generated using the

described method. It neglects the first harmonic of the 12-month seasonal variation.

Figure 3: The five-term best fit curve with non-oscillatory function and residual plot.

Since the value of χ2
r for the 5 term fit was greater than 2, this curve is considered not a good fit

for the data.

The seven-term approximation was much better than the five-term fit. This makes sense, since
as you add more functional flexibility, the better you can tune the fitting function. Seeing which
functions are required to get a good fit based on a glance at the data is a critical piece of using this
method. By picking out the terms that one needs, a model of the system can be approximated,
and important pieces of the trend can be extracted.

The residual plots should look like noise hovering closely around 0 to indicate that the residual has
no functional form of its own. Figure 2 shows a residual plot that might still have some functional
dependence: perhaps a slower, 60-month-period sin-wave. More data is needed to confirm that this
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new term should be included in the fitting function, but it is possible that there is a larger-period
variation in this data.

This table shows each term of the best fit function with its associated error:

Equation Index Coefficient (7) Error Parameters (7) Coefficient (5) Error Parameters (5)

0 365.07183 0.095258597 365.03678 0.095215733

1 0.14269703 0.0034232854 0.14308237 0.0034222797

2 0.00020490633 2.5660758e-005 0.00020648652 2.5654083e-005

3 2.173156 0.046432572 2.1825455 0.046427666

4 2.2434073 0.046455646 2.2407659 0.04645038

5 -0.93157652 0.046313849 N/A N/A

6 -0.31806841 0.046487511 N/A N/A

By extracting the parts of the best fit line that are constant, linear, and quadratic, one notices
a small linear term on top of the quite strong 12-month period signal and constant offset. This
indicates that the amount of CO2 in the atmosphere near Baja California Sur, Mexico is increasing
over time (and very slightly accelerating). One can clearly see why a more busy piece of data would
require this method to extract the important overall trends, especially with data sets that have
many dependant variables.
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Source Code

/* AEP 4380 Assignment #8

Least Squares Curve Fitting

Run on Windows core i7 with gcc version 8.2.0 (MinGW.org GCC-8.2.0-3)

Gregory Kaiser November 15 2019

*/

#include <cstdlib>

#include <cmath>

#include <iostream>

#include <fstream>

#include <iomanip>

#include <string>//std strings

#include <vector>//std vector

//from class website -

//Kirkland, E: https://courses.cit.cornell.edu/aep4380/secure/arrayt.hpp

#include "arrayt.hpp"//for the matrix math stuff

using namespace std; //makes writing code easier

double pi = 4.0*atan(1.0);//pi

void testGauss();

void ghk_gaussj(arrayt<double>&, arrayt<double>&);

double f_co2(int, double);//helper function

//void ghk_gje(arrayt<double>&, arrayt<double>&); //gaussj without pivot

int main(){

ofstream fp2; //output file for original data

fp2.precision(9);

fp2.open("hw8_1.dat");

if(fp2.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}

ofstream fp3; //output file for best fit line

fp3.precision(8);

fp3.open("hw8_2.dat");

if(fp3.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}

ofstream fp4; //output file for best fit errors

fp4.precision(8);

fp4.open("hw8_3.dat");

if(fp4.fail()){
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cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}

//---------------READING DATA EXAMPLE-------------------------------

//Kirkland, E: https://courses.cit.cornell.edu/aep4380/secure/hw08f19.pdf

int i, j, k, npts, year, t, nval;

double co2, ymin, ymax;

// use dynamically sized container classes

string cline;

vector<double> x, y;

ifstream fp; // input file stream

fp.open("baj.dat.txt");

if( fp.fail() ) { cout << "Can’t open file."<< endl; exit(0); }

//--------- read data from file in complicted format -------

// skip first 15 lines

for( i=0; i<16; i++) getline( fp, cline ); // read a whole line

t = 0; // time in months

npts = 0; // number of data points

ymin = 1000.0;

ymax = -ymin;

for( i=0; i<70; i++) {

fp >> year;

//cout << "year = " << year << endl;

if( 0 == i ) nval = 11; else nval = 12; // line is short(?)

for( j=0; j<nval; j++) {

fp >> co2;

if( co2 > 0.0 ) {

x.push_back( t ); // use auto sizing because we don’t

y.push_back(co2); // know how many elements there will be

if( y[npts] > ymax ) ymax = y[npts]; // x and y index like an array

if( y[npts] < ymin ) ymin = y[npts]; // could use co2 here also

npts++;

}

//cout << "t= " << t << ", co2= " << co2 << ", npts= " << npts << endl;

fp2<<co2<<setw(15)<<t<<endl;

t += 1;

}

if( year >= 2007 ) break; // end of file

getline( fp, cline ); // read rest of line

}

//cout << "y.size() = " << y.size() << endl; // example of size(); should be same as npts

//cout << "Total number of points = " << npts << endl;

//cout << " with range " << ymin << " to " << ymax << endl;

j = 0;

for( i=0; i<x.size(); i++){

if( fabs( i - x[i] ) > 0.1 ) {

cout << "i, t[i] = " << i << ", " << x[i] << endl;

j++;

}

}

//cout << "number of bad points = " << j << endl;

//-------END READING DATA EXAMPLE--------------------------------------

//x and y contain the co2 data as a function of time (x=t, y=co2)

//-----------HW begin-------------------
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int num_eqns = 7; //the number of fitting functions being used, 5 or 7

arrayt<double> F(num_eqns,num_eqns);

arrayt<double> b(num_eqns,1);

arrayt<double> sigma(npts);

//construct sigma from the co2 numbers in y

for(i=0;i<npts;i++){

sigma(i) = 0.001*y[i];

//error is 0.1% of the co2 concentration at a given y

}

//construct the matrix F using 2 nested for loops

//Fij=Fji so some steps can be taken towards efficiency

for(i=0;i<num_eqns;i++){

for(j=i;j<num_eqns;j++){

//calculate F_ij as a sum over every month with corresponding sigma

F(i,j)=0;//zero the element before the sum

for(k=0;k<npts;k++){

//accumulate over all times for a specific element

F(i,j)+=f_co2(i,x[k])*f_co2(j,x[k])/(sigma(k)*sigma(k));

}

F(j,i)=F(i,j);//symmetry

}//end j

}//end i

//construct the b matrix using sigma and f_co2

for(i=0;i<num_eqns;i++){

b(i,0)=0;//clear b before sum

for(j=0;j<npts;j++){

//sum a component of b over all points

b(i,0)+=(y[j])*f_co2(i,x[j])/(sigma(j)*sigma(j));

}

}

//solve the matrix equation Fa=b using the helper function

//for Gauss-Jordan Elimination

ghk_gaussj(F,b);

//b now contains a and F is now F^-1

double fitpoint;

double noseason;

double chi_sqr_red=0;

double error_now=0;

for(i=0;i<npts;i++){

fitpoint=0;//the fit point for this month

noseason=0;//the fit point without the seasonal oscillations

for(j=0;j<num_eqns;j++){

fitpoint+=b(j,0)*f_co2(j,x[i]);

if(j<3){//j=0,1,2 are the const, lin, quad terms

noseason+=b(j,0)*f_co2(j,x[i]);

}

}

error_now = y[i]-fitpoint;

chi_sqr_red += (error_now)*(error_now)/(sigma(i)*sigma(i));

fp3<<fitpoint<<setw(15)<<error_now<<setw(15)<<noseason<<setw(15)<<i<<endl;

}

chi_sqr_red = chi_sqr_red/(npts-num_eqns);

cout<<"chi_sqr_red: "<<chi_sqr_red<<endl;

arrayt<double> errors(num_eqns);
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//calculate the error terms for the best fit parameters

for(i=0;i<num_eqns;i++){

errors(i) = sqrt(F(i,i));

fp4<<b(i,0)<<setw(15)<<errors(i)<<setw(15)<<i<<endl;

}

//fp5.close();

fp4.close();

fp3.close();

fp2.close();

return(EXIT_SUCCESS);

} //end main

void testGauss(){

cout<<"test: "<<endl;

cout<<setw(15);

int i,j;

arrayt<double> tester(3,3);

arrayt<double> sampleb(3,1);

tester(0,0)=1;tester(0,1)=100;tester(0,2)=0;

tester(1,0)=1;tester(1,1)=0;tester(1,2)=10;

tester(2,0)=0;tester(2,1)=15;tester(2,2)=1;

sampleb(0,0)=1;sampleb(1,0)=1;sampleb(2,0)=1;

for(j=0;j<3;j++){

for(i=0;i<3;i++){

cout<<tester(i,j)<<setw(15);

}cout<<endl;

}cout<<endl;

for(j=0;j<3;j++){

cout<<sampleb(j,0)<<setw(15)<<endl;

}cout<<endl;

ghk_gaussj(tester,sampleb);

for(j=0;j<3;j++){

cout<<sampleb(j,0)<<setw(15)<<endl;

}

}

//The function f which carries all of the problem specific fitting functions

//returns the value of the function at the given indpendent variable

//corresponding to the function given by the function index

double f_co2(int index, double months){

//for this problem, the functions are:

//f0 = 1

//f1 = x

//f2 = x^2

//f3 = cos(x*2*pi/12) //corresponds to a 12 month (annual) period wave

//f4 = sin(x*2*pi/12)

//f5 = cos(x*2*pi/6) //corresponds to a 6 month (seasonal) period wave

//f6 = sin(x*2*pi/6)

switch(index){

case 0: return 1;

case 1: return months;

case 2: return months*months;

case 3: return cos(months*2.0*pi/12.0);

case 4: return sin(months*2.0*pi/12.0);

case 5: return cos(months*2.0*pi/6.0);
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case 6: return sin(months*2.0*pi/6.0);

default: cout<<"Undefined Function Index"<<endl;

return(EXIT_SUCCESS);

}

}

//modified gaussj from Num. Rec Press et. al. to use arrayt class for familiarity

//http://numerical.recipes/routines/instbyfile.html

void ghk_gaussj(arrayt<double> &a, arrayt<double> &b){

int i,icol,irow,j,k,l,ll,n=a.n1(),m=b.n2();

//cout<<n<<setw(10)<<m<<setw(15)<<b.n2()<<endl;

double big,dum,pivinv;

arrayt<int> indxc(n),indxr(n),ipiv(n);

for (j=0;j<n;j++) ipiv(j)=0;

for (i=0;i<n;i++) {

big=0.0;

for (j=0;j<n;j++)

if (ipiv(j) != 1)

for (k=0;k<n;k++) {

if (ipiv(k) == 0) {

if (abs(a(j,k)) >= big) {

big=abs(a(j,k));

irow=j;

icol=k;

}

}

}

++(ipiv(icol));

if (irow != icol) {

for (l=0;l<n;l++) SWAP(a(irow,l),a(icol,l));

for (l=0;l<m;l++) SWAP(b(irow,l),b(icol,l));

}

indxr(i)=irow;

indxc(i)=icol;

if (a(icol,icol) == 0.0) throw("gaussj: Singular Matrix");

pivinv=1.0/a(icol,icol);

a(icol,icol)=1.0;

for (l=0;l<n;l++) a(icol,l) *= pivinv;

for (l=0;l<m;l++) b(icol,l) *= pivinv;

for (ll=0;ll<n;ll++)

if (ll != icol) {

dum=a(ll,icol);

a(ll,icol)=0.0;

for (l=0;l<n;l++) a(ll,l) -= a(icol,l)*dum;

for (l=0;l<m;l++) b(ll,l) -= b(icol,l)*dum;

}

}

for (l=n-1;l>=0;l--) {

if (indxr(l) != indxc(l))

for (k=0;k<n;k++)

SWAP(a(k,indxr(l)),a(k,indxc(l)));

}

}

// //Gauss-Jordan Elimination for a given equation Ax=b

// void ghk_gje(arrayt<double> &A, arrayt<double> &b){

// //solves for x if Ax=b

// int i, j, k, num = b.n1();
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// for(i=0;i<num;i++){

// b(i) = b(i)/A(i,i);

// for(j=num-1;j>=i;j--){

// A(i,j) = A(i,j)/A(i,i);

// }

// for(j=0;j<num;j++){

// if(j!=i){//valid

// b(j) -= -A(j,i)*b(i);

// for(k=num-1;k>=i;k--){

// A(j,k) -= -A(j,i)*A(i,k);

// }

// }

// }//endj

// }//end i

// //now b is x and A is destroyed

// }


