
AEP 4380: Homework 9

Gregory Kaiser

November 22nd, 2019

1 Problem Background and Solution Overview

This assignment investigates an approach to analyzing protein folding from a simple two-dimensional
model. Proteins are amino acids (biologically relevant molecules) linked by covalent bonds in a
chain. When this chain is bent, van der Waals forces (among others) cause the chain to be at-
tracted to itself. Through thermal fluctuations, and depending on the surrounding environment,
proteins fold into complicated structures due to these attractions. This is how the protein folds
into a functional structure.

Beginning with a simple straight line chain, one can simulate thermal fluctuations through the use
of a random number generator (RNG) to allow the protein to change its shape. Successive ran-
domizations can help the energy of the structure to fall (Monte Carlo calculations), and eventually
level off at some minimization for a given structure. This is a simplification of how proteins fold in
vivo.

The initial protein had an energy of 0 and looked like a vertical bar:

Figure 1: Protein initial condition.

In this two-dimensional model, amino acids lie on a grid with unit distance between each possible
location. Covalent bonds between adjacent amino acids are locked at 1 unit distance, and so must
lie at angles of 0, 90, and 180 degrees from a previous amino acid. Snapping to this grid allows
random movements of each amino acid to be simplified greatly.
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2 Solution Description

2.1 Random Number Generator (RNG)

The random number generator Ranq1.doub() is used to create a random distribution of 100,000
points, and a set of 10,000 random pairs of points.[1] This confirms that a call to this RNG generates
a random double between 0 and 1 for use later.

Figure 2: Left: A random distribution of 100,000 numbers between 0 and 1. Notice the average
number of hits per bucket matches the bucket size of .01 (≈1000 per bucket). Right: 10,000 sets
of 2 random numbers plotted as functions of one another. This is uniform as expected.

Interestingly, by counting the number of points that lie within a quarter of the unit circle centered
on the origin (where the magnitude of the vector created by the two random numbers is less than
1), the value of π can be approximated over a large number of point samples.

Figure 3: Through random sampling of the first quadrant, pi is approached using 4Nincircle
Ntotal

≈ π,
and confirming the validity of the RNG. Left: a portion of the approximation to 300 points. Right:
Full approximation to 10,000 points converges to around 3.1.
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2.2 Protein Folding Algorithm

To initialize the starting protein, a two-dimensional arrayt of type int is used to store 45 amino
acids, each with three attributes: x position, y position, and type of amino acid. There are 20 such
possible amino acids.[2]

To calculate the energy of a given amino acid configuration, a 20x20 matrix of random numbers
between Emin = −7.0 and Emax = −2.0 is initialized. For a given protein, energy total is calculated
as:

Etotal =
∑

pairsi,j

Eitype,jtypeδij (1)

where itype and jtype are the type of amino acid at index i and j respectively.[3] This energy cal-
culation is performed in a separate function, energy calc, and iterates over all possible interactions
with non-covalently bonded, but adjacent, amino acids. In other words, only amino acids which
are on adjacent grid points and are not covalently bonded are counted in this calculation.

To generate a randomized new structure, a separate function, new protein, takes in the old structure
and modifies it with a valid movement of one amino acid. A RNG chooses a random amino acid
in the sequence, chooses a possible direction for it to move (Northeast, Northwest, Southwest, or
Southeast, diagonally from its current position), and checks to see if that move is conflicting with
another amino acid location. The proposed new location of this amino acid is also checked with
its neighbors to ensure the 1 unit distance maximum from each neighbor is not violated. The grid
points not diagonal from the randomly chosen acid’s original position are omitted because they
would automatically violate this rule.

The energy of the new structure is calculated to check against the previous structure’s energy. The
value ∆E = Enew − Eold determines how much the energy changed from the last step due to this
random change. If the new energy is the same or lower than the old one (∆E ≤ 0), then this step
is accepted as the new protein structure. If not, the new structure is accepted probabilistically
based on the temperature of the system and kB, Boltzmann’s constant: A RNG creates a value
between 0 and 1. If e−∆E/kBT > the random number, then the new protein, however unfavorable,
is accepted as a thermal fluctuation. Otherwise, the fluctuation is rejected. This is called the
Metropolis algorithm.[3]

By performing the above many times, one is effectively simulating the fluctuations in a protein’s
structure, and allowing it to conform into a more closed shape over time.

3 Results and Interpretation

Using 10 million time steps and kBT = 1, a randomly conformed protein was generated which
matched expectations as it curled slowly from the ends towards the middle. Since the head and tail
of the protein have more degrees of freedom than a center piece (and the new protein algorithm is
restricted to starting here), it makes sense that this is where thermal variations begin.

Energy as a function of time steps was plotted for about 500 spots during the simulation:
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Figure 4: Energy of the protein as a function of Monte Carlo Steps

This approximately matches the expected exponential decay. Energy quickly drops as more folded
configurations are found (all drastically more favorable than the striaght line), and then settles to
some value from which it varies randomly.

The end-to-end distance of the protein structure was calculated with a modified distance calculation
which uses doubles instead of integer distances.

Figure 5: End-to-end distance of the protein as a function of Monte Carlo Steps

The actual protein structure is plotted at 104, 105, 106, and 107 time steps, to show the folding
roughly as a function of time:
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Figure 6: The protein structure plotted for time steps 1e4, 1e5, 1e6, 1e7 (final config).

This process is fascinating, since it allows something physical to be simulated statistically, and
shows the importance and power of random-number-generators in general. To simulate Brownian
motion, or statistical systems of any kind, these tools are necessary. Monte Carlo methods also
have deep implications for optimization, since many iterations of a problem can be sampled and
compared to find some ideal value by trial and error (an educated and directed guess and check).

3.1 Extra

Trying different seeds for the RNG yield drastically different results, and also a bit of fun. These
differences are not only due to the variation in type of amino acid chosen along the chain, but also
the randomized interaction energies.
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Figure 7: Two different seeds for the RNG yielf two completely different structures after 1e7 Monte
Carlo calculation steps.

Using a constant seed, and averaging the energy over only the final 10,000 steps of the Monte Carlo
calculation, a plot of average energy for a single amino acid string of length 45 as a function of
kBT shows how the protein has higher average energy at high temperature. It is more likely that
structures with higher energy are accepted if kBT is large, so this makes sense.

However, at low T, there isn’t enough thermal variation to get the protein to find an optimal
structure.

Figure 8: Rough plot of Average Energy over last 10,000 Monte Carlo steps versus kBT from 10 to
1.

With a longer chain (70 amino acids), and with more Monte Carlo steps (100,000,000), not much
more folding is observed But, a 60 amino acid chain after only 10 million steps is consistently more
tangled.:
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Figure 9: Left: Protein of 70 amino acids after 100 million Monte Carlo steps. Right: Protein of
60 amino acids after 10 million Monte Carlo steps.

This must mean that as one adds more amino acids, either the number of steps should be much
higher, or kBT should be higher to introduce more thermal variation in the larger protein.
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Source Code

/* AEP 4380 Assignment #9

Monte Carlo Calculations

Run on Windows core i7 with gcc version 8.2.0 (MinGW.org GCC-8.2.0-3)

Gregory Kaiser November 22nd 2019

*/

#include <cstdlib>

//#include <cstdis>

#include <cmath>

//#include <ctime>

#include <iostream>

#include <fstream>

#include <iomanip>

//Numerical Recipes type definitions for use of rendom number generator Press et. al.

#include "nr3.h"

//Numerical Recipes RNG Press et. al.

#include "ran.h"

//#define ARRAYT_BOUNDS_CHECK

//from class website -

//Kirkland, E: https://courses.cit.cornell.edu/aep4380/secure/arrayt.hpp

#include "arrayt.hpp"//for vectors, matrices, ease of use

using namespace std;

//function definitions

double energy_calc(arrayt<double> &, arrayt<int> &);

void new_protein(arrayt<int> &);

void print_protein(arrayt<int> &);

int distance(int , int , arrayt<int> &);

int distance_doub(int , int , arrayt<int> &);

int distance_pos(int, int , int , int );

//RNG seed

Ullong iseed = 222774874;//time(NULL);//new seed on every run

Ranq1 my_rand = Ranq1(iseed);

int main(){

ofstream fp; //output file for random numbers

fp.precision(8);

fp.open("hw9_1.dat");

if(fp.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}

ofstream fp2; //output file for convergence to pi

fp2.precision(8);

fp2.open("hw9_2.dat");

if(fp2.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}
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ofstream fp3; //output file for energy

fp3.precision(8);

fp3.open("hw9_3.dat");

if(fp3.fail()){

cout<<"cannotopenfile"<<endl;

return(EXIT_SUCCESS);

}

//HW Assignment

//-----TESTING RANQ1 AND FINDING PI------------

int i, j, k, num_rand = 10000, num_circ=0;

//num_rand = 100000;//for the full 100,000 distribution

double pi_est = 0;

arrayt<double> rand_1(num_rand);//100000 random number array

arrayt<double> rand_2(num_rand);//another random number array

for(i=0;i<num_rand;i++){

rand_1(i) = my_rand.doub();//fill with random numbers between 0 and 1

rand_2(i) = my_rand.doub();//fill with random numbers between 0 and 1

fp<<rand_1(i)<<setw(15)<<rand_2(i)<<setw(15)<<i<<endl;

if((rand_1(i)*rand_1(i)+rand_2(i)*rand_2(i))<=1){

//this spot is in a circle radius 1

num_circ++;

}

fp2<<4.0*num_circ/(i+1)<<setw(15)<<(i+1)<<endl;

}

//-----END TESTING RANQ1----------------

double E_min = -7.0, E_max = -2.0, energy = 0;

int length_prot = 70, xpos_init=0, ypos_init=0;

arrayt<double> E_amino(20,20);

arrayt<int> protein(3,length_prot);

//initialize the interaction energy matrix

for(i=0;i<20;i++){

for(j=i;j<20;j++){

E_amino(i,j) = my_rand.doub()*(E_max-E_min)+E_min;

E_amino(j,i) = E_amino(i,j);

//cout<<E_amino(i,j)<<setw(15)<<E_amino(j,i)<<endl;

}

}

//fill initial protein

for(j=0;j<length_prot;j++){

//xposition

protein(0,j) = xpos_init;

//cout<<protein(0,j)<<endl;

//yposition

protein(1,j) = ypos_init;

//type

protein(2,j) = (int) floor(my_rand.doub()*20);

//cout<<protein(2,j)<<endl;

//increment to initialize a striaght line protein

ypos_init++;

}
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//print_protein(protein);

energy = energy_calc(E_amino, protein);

cout<<"E_0: "<<energy<<endl;

//-----------Iterate by calculating new energies------------

int Nsteps = 100000000, energy_i=0;

double delta_energy=0, energy_prev=energy, kbT = 1.0, e_avg=0;

double rand_e=0, end2end=0;

//create a temporary structure to test for energy before accepting

arrayt<int> temp(3,length_prot);

for(i=0;i<Nsteps;i++){

temp = protein; //dummy temp to test new structure

//generate a random new structure and check its energy

new_protein(temp);

energy = energy_calc(E_amino, temp);//calc the new energy

delta_energy = energy-energy_prev;//difference from prev

if(delta_energy<=0){//good new protein-->keep it

protein = temp;

energy_prev=energy;

}

else{//this protein has higher energy, accept probabilistically

rand_e = my_rand.doub();

if((exp(-delta_energy/kbT))>rand_e){//accept the move

protein = temp;

energy_prev=energy;

}

else{//reject the change

//protein is unchanged

//previous energy is unchanged

}

}

if(i%10000==0){//marker for progress

cout<<i<<endl;

}

if(i==1e6){//marker for plotting specific time steps

// print_protein(protein);

}

if(i%20000==0){//plot 500 points for the energy and end to end distance

end2end = distance_doub(0,length_prot-1,protein);

fp3<<end2end<<setw(15)<<energy<<setw(15)<<energy_i<<endl;

energy_i++;

}

if(i>(Nsteps-10000)){//average over last 10000 terms

e_avg+=energy;

}

}

print_protein(protein);//final configuration

cout<<"E_"<<i<<": "<<energy<<endl;//final energy

cout<<e_avg/10000<<endl;

fp.close();

fp2.close();

fp3.close();

return(EXIT_SUCCESS);

} //end main
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//helper to print the protein to the console for debugging

//and to print to the file for interpretation in MATLAB

void print_protein(arrayt<int> &protein){

ofstream fp_prot; //output file for protein

fp_prot.open("hw9_prot.dat");

if(fp_prot.fail()){

cout<<"cannotopenfile"<<endl;

}

int j, length = protein.n2();

for(j=0;j<length;j++){

//cout<<j<<setw(15)<<protein(0,j)<<setw(15)<<

// protein(1,j)<<setw(15)<<protein(2,j)<<endl;

fp_prot<<j<<setw(15)<<protein(0,j)<<setw(15)<<

protein(1,j)<<setw(15)<<protein(2,j)<<endl;

}

fp_prot.close();

}

//modifies old protein into a new allowed configuration

//does not end until new configuration is chosen

void new_protein(arrayt<int> &old_protein){

int i,j, length = old_protein.n2();

int ix, iy, itype;//positions of the ith animo acid

int n1x, n1y, n2x, n2y, dist, dist2; //covalently bonded neighbor positions

//indicators of new found protein and validity of change

int chosen = 0, valid_move=1, neighbors_ok=1;

int num_iter=0;

//choose a random amino acid in the sequence

int rand_acid;

int rand_acid_x;

int rand_acid_y;

//chose a random new place to put the randomly chosen amino acid

int rand_move;

//store the proposed move positions

int new_pos_x;

int new_pos_y;

while(!chosen){

//if(1){

//choose a random amino acid in the sequence

rand_acid = (int) floor(my_rand.doub()*(length)); //its index

//if length=45, rand_acid is a number between 0 and 44

rand_acid_x = old_protein(0,rand_acid); //its xpos

rand_acid_y = old_protein(1,rand_acid); //its ypos

//chose a random new place to put the randomly chosen amino acid

rand_move = (int) floor(my_rand.doub()*4)+1;

//1,2,3,4, corresponding to NE, NW, SW, SE movement

//store the proposed move positions

switch(rand_move){

case 1://move northeast, delta x and y is +1

new_pos_x = rand_acid_x+1;

new_pos_y = rand_acid_y+1;
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break;

case 2://move northwest, delta x is -1 and y is +1

new_pos_x = rand_acid_x-1;

new_pos_y = rand_acid_y+1;

break;

case 3://move southwest, delta x and y is -1

new_pos_x = rand_acid_x-1;

new_pos_y = rand_acid_y-1;

break;

case 4://move southeast, delta x is +1 and y is -1

new_pos_x = rand_acid_x+1;

new_pos_y = rand_acid_y-1;

break;

default://random number generated incorrectly, throw error

cout<<"Invalid Random Move Chosen"<<endl;

break;

}

//check spatial conflict of proposed move and all AAs in sequence

i=0; valid_move=1;

while(i<length&&valid_move){

if(i!=rand_acid){//this is some acid other than the randomly chosen one

//it’s positions:

ix = old_protein(0,i);

iy = old_protein(1,i);

if((new_pos_x==ix)&&(new_pos_y==iy)){//this means there is a conflict

valid_move=0;//ends checking for conflicts

}

}//end other acid check

i++;

}//end looking at all the amino acids for spatial conflict

neighbors_ok=1;//reset neighbor check

if(valid_move){//no spatial conflicts, check neighbor distances

if(rand_acid==0){//head

n1x = old_protein(0,rand_acid+1);

n1y = old_protein(1,rand_acid+1);

dist = distance_pos(new_pos_x, new_pos_y, n1x, n1y);

if(dist!=1){//this AA isn’t the right distance for the proposed change

neighbors_ok=0;

}

}

else if(rand_acid==length-1){//tail

n2x = old_protein(0,rand_acid-1);

n2y = old_protein(1,rand_acid-1);

dist = distance_pos(new_pos_x, new_pos_y, n2x, n2y);

if(dist!=1){//this AA isn’t the right distance for the proposed change

neighbors_ok=0;

}

}

else{//middle

n2x = old_protein(0,rand_acid-1);

n2y = old_protein(1,rand_acid-1);

n1x = old_protein(0,rand_acid+1);

n1y = old_protein(1,rand_acid+1);

dist2 = distance_pos(new_pos_x, new_pos_y, n2x, n2y);

dist = distance_pos(new_pos_x, new_pos_y, n1x, n1y);

if(dist!=1||dist2!=1){

//this AA isn’t the right distance from either AA for the proposed change
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neighbors_ok=0;

}

}

}

if(valid_move&&neighbors_ok){

//this means that the move checks out, both spatially and

//with distance to neighbors

//modify old protein and don’t try another random change

chosen = 1;

old_protein(0, rand_acid) = new_pos_x; //modify old x val

old_protein(1, rand_acid) = new_pos_y; //modify old y val

}

else{//continue to try random changes without changing the old protein

chosen = 0;

}

num_iter++;

}

}

//calculates the interaction energy of a given structure with a set of

//interaction energies

double energy_calc(arrayt<double> &Energies, arrayt<int> &structure){

int i,j, ix, iy, itype, size = structure.n2();

int n1x, n1y, n2x, n2y, dist; //covalently bonded neighbor positions

int jx, jy, jtype;//possible neighbor positions

double energy = 0;

//cycle through all amino acids

for(i=0;i<size;i++){

//store ith amino acid

itype = structure(2,i);

for(j=i+2;j<size;j++){

//since j<i+1 have been checked against all j already

//and j==i+1 is a covalent bond for sure

dist = distance(i,j,structure);

if(dist==1){//valid neighbor, non covalent

//neighbor positions to check

jtype = structure(2,j);

energy+=Energies(itype,jtype);

}//end valid neighbor

}//end j

}//end i

return energy;

}//end calc energy

//calculate the distance between two amino acids

int distance(int index1, int index2, arrayt<int> &structure){

int posx1, posx2, posy1, posy2;

posx1 = structure(0,index1);

posy1 = structure(1,index1);

posx2 = structure(0,index2);

posy2 = structure(1,index2);

return abs(posx1-posx2)+abs(posy1-posy2);

}

//calculate the distance between two amino acids

//more accurate for the distance plot as a double

int distance_doub(int index1, int index2, arrayt<int> &structure){
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double posx1, posx2, posy1, posy2;

posx1 = (double) structure(0,index1);

posy1 = (double) structure(1,index1);

posx2 = (double) structure(0,index2);

posy2 = (double) structure(1,index2);

return sqrt(((posx1-posx2)*(posx1-posx2))+((posy1-posy2)*(posy1-posy2)));

}

//calculate the distance between two (x, y) sets.

int distance_pos(int posx1, int posy1, int posx2, int posy2){

return abs(posx1-posx2)+abs(posy1-posy2);

}


